When and how should oral immunotherapy for food allergy become daily clinical practice?

Nikos Papadopoulos
Professor Allergy & Paediatric Allergy
University of Manchester, University of Athens
Disclosures

<table>
<thead>
<tr>
<th>Category</th>
<th>Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Support</td>
<td>Nestle, Nutricia, MSD, Menarini</td>
</tr>
<tr>
<td>Speaker</td>
<td>Novartis, MEDA, Omega, HAL, Nutricia, Menarini</td>
</tr>
<tr>
<td>Advisory Boards</td>
<td>Abbvie, ALK, Novartis, Chiesi, Biomay, HAL, Nutricia, MEDA, Menarini, Wockhardt</td>
</tr>
</tbody>
</table>
Food allergy – Epidemiology & Impact

Allergy to egg in a European cohort - UK leading

Allergy to peanut in the UK - increasing

Xepapadaki et al, Allergy 2016;71:350-7

Impact on Quality of Life and more

• Reduced general health perception, emotional impact, limitation of family activities
• Pronounced effect in severe cases

Sicherer et al Ann All Asthma Immunol 2001;87:461-4

• May lead to nutritional deficiencies

• Frequent adverse reactions
Current food allergy management strategy

• Identification of offending food
• Management plan
 • Avoidance
 • Treatment of reactions
• Education for the above
Less than what patients or physicians hope for!
Need for more!
Allergen Immunotherapy – a >100-year old tool

PROPHYLACTIC INOCULATION AGAINST HAY FEVER.

BY L. NOON, B.C. CANTAB., F.R.C.S. ENG.
(From the Laboratory of the Department for Therapeutic Inoculation, St. Mary’s Hospital.)

Hay fever is a form of recurrent catarrh affecting certain individuals during the months of May, June, and July. It is caused by a soluble toxin found in the pollen of grasses.

Lancet, 1911
Efficacy & safety of immunotherapy

- Used worldwide
- Effectiveness very well established for several allergens
- Safety acceptable, considerably improved

Matricardi et al, JACI 2011;128:791
So, why don’t we use classical immunotherapy for food allergy?
Early injection immunotherapy promising, but with unacceptable level of adverse events

- 11 patients (14-43 years, moderate-severe allergy to peanut)
- Rush injection immunotherapy protocol with defatted peanut flour
- Study terminated when a placebo patient received an active peanut full dose and died
- Improved challenge scores in 3 active patients
- High level of systemic reactions (13%)

Strategies for improving food immunotherapy

Food allergen modification
- Denaturation by extensive heating
- Molecular alteration of IgE-binding epitopes

Alternative antigen delivery methods
- Allergen incorporation into nanoparticles
- Epicutaneous immunotherapy (EPIT)

Adjunct treatment with immunomodulatory agents
- Anti-IgE therapy
- FAHF-2
- T\textsubscript{H}1 adjuvants
- Monoclonal antibody blockade of T\textsubscript{H}2-promoting factors

Moran TP et al. *Curr Opin Immunol* 2013
Which food?
The natural history of food allergy varies
Home-made oral immunotherapy: the ‘ladders’

Milk ladder

<table>
<thead>
<tr>
<th>Stage</th>
<th>Products containing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Small crumb of a biscuit containing <1 g of whole cow’s milk protein per biscuit. Build up to 1 biscuit over 5 weeks as tolerated. This will include shop bought biscuits that contain cow’s milk with protein content listed as < 1 g of protein per biscuit.</td>
<td></td>
</tr>
<tr>
<td>2. Stage 2: Other baked products containing cow’s milk protein, for example biscuits, cakes, muffin, waffles, scotch pancakes.</td>
<td></td>
</tr>
<tr>
<td>3. Stage 3: Products containing cooked cheese or whole cow’s milk as a heated ingredient, for example custard, cheese sauce, pizza, rice pudding.</td>
<td></td>
</tr>
<tr>
<td>4. Stage 4: Uncooked cheese or uncooked non-yogurt desserts, for example ice cream or mousse.</td>
<td></td>
</tr>
</tbody>
</table>

Cow’s milk
- UHT milk followed by pasteurised milk and then unpasteurised milk (if this form is preferred by the family).

NOTES:
1. Affected individuals and their families are advised to proceed with caution as the classification in a ‘milk ladder’ of milk-containing foods from low to high allergenicity is imperfect and may thus result in a bigger than anticipated step up in exposure.
2. At all stages start with a small amount and gradually increase.
3. Each individual product is introduced in Stage 3. It is to be introduced in trace amounts first as they have more milk protein and a lower degree of heat treatment or protein denaturation. There is also variability in milk protein between products.
4. If a reaction occurs, the culprit food should be stopped and reintroduction should be continued with food from a lower stage in smaller amounts.

DEVELOPMENT OF MILK LADDER (rationale for classification)
1. The ‘milk ladder’ considered factors that influence the allergenic potential of cow’s milk food stuffs in their stage classification: volume or quantity, effect of heating (including duration and degree of heat), and wheat matrix effect [135].
2. Classification:
 - **Stage 1:** small quantity, baked, and matrix.
 - **Stage 2:** larger quantity, baked and matrix OR traces without matrix or with minimal heating.
 - **Stage 3:** larger quantity, less heating, and less matrix OR all with some degree of protein change with heating or manufacturing.
 - **Stage 4:** fresh milk products.

Egg ladder

Cracked eggshell
- Utensils with raw case mixture or raw egg

Processed meat/burger/sausage
- Teacakes®, Milly’s Way®, Mars®, Snickers®

Crème Egg®, Chobani®
- Hollandaise, Holland and Tarter sauces

Biscuit
- Scottie & Mince

Mayonnaise/salt cream
- Mayonnaise

Marshmallow
- Meringue/fresh ice-cream

Crème caramel & Crème Brûlée
- Scrambled eggs

Omelette
- French Toast

Quiche
- Yorkshire pudding

Fried/hard-boiled egg
- Coated batter/tempura/breaded

Dried & fresh egg pasta & egg noodle
- Pancake

2. LIGHTLY COOKED

Waffle biscuit
- Bouchier® & Lady’s finger®

Baked sponge/muffin/scone & biscuits

1. WELL COOKED

Luyt et al CEA 2014:44:642

IFAN 2015
Regular feeding with baked egg in children with egg allergy

<table>
<thead>
<tr>
<th>Age (mo)</th>
<th>No. of patients</th>
<th>IgE f1 (IU/mL)</th>
<th>SPTs (mm)</th>
<th>Challenge outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Allergic</td>
<td>24 (9)</td>
<td>51</td>
<td>3 (13.42)</td>
<td>7 (3.5)</td>
</tr>
<tr>
<td>Sensitized</td>
<td>24 (18)</td>
<td>36</td>
<td>4.62 (8.04)</td>
<td>7 (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>Allergic</td>
<td>24 (9)</td>
<td>51</td>
<td>3.28 (3.83)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Sensitized</td>
<td>24 (18)</td>
<td>36</td>
<td>7.19 (9.9)</td>
<td>8 (2)</td>
</tr>
</tbody>
</table>

6 months daily intake. Tolerance 95% (expected 60%-70%)

Konstantinou et al. JACI 2008
Oral immunotherapy for food allergy: The evidence
Effectiveness of Oral Immunotherapy (OIT)

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Control</th>
<th>Experimental</th>
<th>Weight (%)</th>
<th>RR</th>
<th>95 % CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burks 2012</td>
<td>0</td>
<td>22</td>
<td>4.1</td>
<td>0.06</td>
<td>0.00, 0.88</td>
</tr>
<tr>
<td>Caminiti 2009</td>
<td>0</td>
<td>2</td>
<td>4.2</td>
<td>0.20</td>
<td>0.01, 2.98</td>
</tr>
<tr>
<td>Lacono 2013</td>
<td>0</td>
<td>9</td>
<td>4.0</td>
<td>0.05</td>
<td>0.00, 0.80</td>
</tr>
<tr>
<td>Longo 2008</td>
<td>0</td>
<td>11</td>
<td>4.1</td>
<td>0.04</td>
<td>0.00, 0.71</td>
</tr>
<tr>
<td>Mansouri 2007</td>
<td>0</td>
<td>18</td>
<td>4.2</td>
<td>0.04</td>
<td>0.00, 0.62</td>
</tr>
<tr>
<td>Martorell 2011</td>
<td>7</td>
<td>27</td>
<td>11.1</td>
<td>0.26</td>
<td>0.13, 0.50</td>
</tr>
<tr>
<td>Meglio 2013</td>
<td>2</td>
<td>8</td>
<td>8.6</td>
<td>0.25</td>
<td>0.07, 0.90</td>
</tr>
<tr>
<td>Morisset 2007</td>
<td>18</td>
<td>24</td>
<td>12.0</td>
<td>0.66</td>
<td>0.47, 0.92</td>
</tr>
<tr>
<td>Morisset 2007</td>
<td>18</td>
<td>34</td>
<td>11.9</td>
<td>0.69</td>
<td>0.47, 1.02</td>
</tr>
<tr>
<td>Pajno 2010</td>
<td>0</td>
<td>10</td>
<td>4.1</td>
<td>0.05</td>
<td>0.00, 0.75</td>
</tr>
<tr>
<td>Patriarca 1998</td>
<td>0</td>
<td>12</td>
<td>4.2</td>
<td>0.05</td>
<td>0.00, 0.83</td>
</tr>
<tr>
<td>Patriarca 2003</td>
<td>0</td>
<td>15</td>
<td>4.2</td>
<td>0.04</td>
<td>0.00, 0.60</td>
</tr>
<tr>
<td>Patriarca 2007</td>
<td>0</td>
<td>31</td>
<td>4.2</td>
<td>0.05</td>
<td>0.00, 0.80</td>
</tr>
<tr>
<td>Skripak 2008</td>
<td>0</td>
<td>12</td>
<td>4.2</td>
<td>0.07</td>
<td>0.00, 1.03</td>
</tr>
<tr>
<td>Staden 2007</td>
<td>7</td>
<td>9</td>
<td>10.6</td>
<td>0.96</td>
<td>0.43, 2.15</td>
</tr>
<tr>
<td>Varshney 2011</td>
<td>0</td>
<td>19</td>
<td>4.2</td>
<td>0.06</td>
<td>0.00, 0.91</td>
</tr>
</tbody>
</table>

Total (95 % CI) 270 404 100.0 0.19 0.09, 0.37

Total events 52 290

Heterogeneity: $I^2 = 99.3$%

Test for overall effect: $z = 4.80$ (P < 0.00001)

Risk ratios (RR) of persisting food allergy as assessed by double-blind placebo-controlled food challenge in oral immunotherapy vs. controls.
• 23 children (3-14 years), highly sensitised (median 95kU/L)
• Initial rush protocol (7 days) achieved in only 1/23
• Long-term build up achieved in 14/23 after 7 months
 • 0.5g peanut with 20% increases every 2 weeks
• Maintenance 2 months, then evaluate outcome
Significant increase in tolerated dose with not too many adverse reactions
A randomized controlled study of peanut oral immunotherapy: Clinical desensitization and modulation of the allergic response

Pooja Varshney, MD, a Stacie M. Jones, MD, c Amy M. Scurlock, MD, c Tamara T. Perry, MD, c Alex Kemper, MD, MPH, MS, b Pamela Steele, CPNP, a Anne Hiegel, RN, o Janet Kamilaris, RN, a Suzanne Carlisle, RN, o Xiaohong Yue, MS, a Mike Kulis, PhD, a Laurent Pons, PhD, a Brian Vickery, MD, a and A. Wesley Burks, MD a Durham, NC, and Little Rock, Ark

• 28 children (1-16 years), highly sensitised (sIgE 106kU/)
• 3-phase protocol: rush (1 day), build-up (44 weeks), maintenance (4 weeks)
• Partially defatted peanut flour, up to 4 gr (~16 peanut equivalent)
• 3 drop-outs, 16 active, 9 placebo
Efficacy

Safety

• Initial day: 9/19 of active required treatment (2 adrenaline)

• Build-up: symptoms in 1.2% of 407 doses

Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): a phase 2 randomised controlled trial

Katherine Anagnostou, Sabita Islam, Yvonne King, Loraine Foley, Laura Pasea, Simon Bond, Chris Palmer, John Deighton, Pamela Ewan, Andrew Clark

- 85 children, 7-16 years, sIgE
- 26 weeks of OIT vs avoidance (open label)
- 2-phase with 2 week increments
- Maintenance of 0.8 gr peanut flour
- Subsequent OIT for the avoidance group

62% of OIT could eat 1.4gr of peanut after 6 months

Efficacy of egg OIT

A DBPC randomised trial on 55 children, 5-11 years old, with egg allergy

<table>
<thead>
<tr>
<th>Table 2. Success Rates on Oral Food Challenge.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Desensitization, 5 g at 10 mo</td>
</tr>
<tr>
<td>Desensitization, 10 g at 22 mo</td>
</tr>
<tr>
<td>Sustained unresponsiveness at 24 mo‡</td>
</tr>
</tbody>
</table>

Burks W et al NEJM 2012;367:233
Milk Oral vs. Sublingual IT

Increased efficacy, less safety

TABLE II. Clinical outcomes

<table>
<thead>
<tr>
<th>Group</th>
<th>SLIT/SLIT</th>
<th>SLIT/OITB</th>
<th>SLIT/OITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrew</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Failed full desensitization challenge (T5)</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Failed challenge 1 wk off therapy (T6)</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Failed challenge 6 wk off therapy (T7)</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Considered tolerant</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total no.</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE III. Symptoms with dosing

<table>
<thead>
<tr>
<th>Type of dose (no. of doses)</th>
<th>Total</th>
<th>Oral</th>
<th>GI</th>
<th>Skin</th>
<th>Upper</th>
<th>Lower</th>
<th>Multisystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIT escalation (2021)</td>
<td>30.28%</td>
<td>26.82%</td>
<td>2.97%</td>
<td>2.23%</td>
<td>0.59%</td>
<td>0.45%</td>
<td>0.10%</td>
</tr>
<tr>
<td>SLIT maintenance (4205)</td>
<td>28.25%</td>
<td>27.99%</td>
<td>0.38%</td>
<td>0.10%</td>
<td>0.07%</td>
<td>0.02%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Initial OIT escalation (1842)</td>
<td>36.21%</td>
<td>29.64%</td>
<td>7.17%</td>
<td>1.79%</td>
<td>1.41%</td>
<td>2.17%</td>
<td>0.71%</td>
</tr>
<tr>
<td>OITB escalation and maintenance (1230)</td>
<td>30.41%</td>
<td>24.07%</td>
<td>7.97%</td>
<td>0.73%</td>
<td>1.30%</td>
<td>2.28%</td>
<td>0.08%</td>
</tr>
<tr>
<td>OITA escalation and maintenance (1396)</td>
<td>26.72%</td>
<td>21.99%</td>
<td>3.15%</td>
<td>1.72%</td>
<td>2.79%</td>
<td>1.00%</td>
<td>0.43%</td>
</tr>
<tr>
<td>Post dose-adjustment maintenance (6029)</td>
<td>16.42%</td>
<td>12.71%</td>
<td>2.82%</td>
<td>1.68%</td>
<td>0.53%</td>
<td>1.01%</td>
<td>0.68%</td>
</tr>
</tbody>
</table>

Epinephrine was used for 2 SLIT doses and 4 OIT doses.
GI, Gastrointestinal; Lower, lower respiratory tract; Upper, upper respiratory tract.

How can we optimise for the clinic?

• Choice of patient
• Optimal schedule
• Very well trained patients/parents
• Very close monitoring
Choice of patient

• Severity of reaction
• Sensitisation level/profile
• Comorbidities (mainly asthma)
• Collaboration/compliance
• Other circumstances

• Irony: chances of success inverse to need!
Typical Oral Immunotherapy (OIT) approach

Typical OIT approach includes:
- **Screening and Baseline Challenge**
- **Initial dose escalation day** (max 10-25 mg)
- **Dose Build-up**: Daily dosing with observed dose increases q1-2 weeks over 3-9 months
- **Home Maintenance**: x months – years (doses 500 mg to 4000 mg)
 - 6-12 Months
 - 18+ Months
- **Repeat Challenges** (5-10 grams)
 - Many studies also include a final challenge off therapy to distinguish transient desensitization from sustained unresponsiveness

Wood R. JACI 2016;137:973–982
Milk-OIT population - Athens

All on free CM diet

1 dropped out because of EoE
Oral food desensitization: the BACH proposal for the very gradual reintroduction of a food

<table>
<thead>
<tr>
<th>Number of steps by which we want to double the dose (n)</th>
<th>$\frac{n}{2}$th root of 2</th>
<th>Increment factor between doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sqrt{2}$</td>
<td>2.000000</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{2}{2}$</td>
<td>1.414214</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{3}{2}$</td>
<td>1.259921</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{4}{2}$</td>
<td>1.189207</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{5}{2}$</td>
<td>1.149696</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{6}{2}$</td>
<td>1.122462</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{7}{2}$</td>
<td>1.104900</td>
</tr>
<tr>
<td>8</td>
<td>$\frac{8}{2}$</td>
<td>1.090508</td>
</tr>
<tr>
<td>9</td>
<td>$\frac{9}{2}$</td>
<td>1.080060</td>
</tr>
<tr>
<td>10</td>
<td>$\frac{10}{2}$</td>
<td>1.071773</td>
</tr>
<tr>
<td>11</td>
<td>$\frac{11}{2}$</td>
<td>1.065041</td>
</tr>
<tr>
<td>12</td>
<td>$\frac{12}{2}$</td>
<td>1.059463</td>
</tr>
<tr>
<td>13</td>
<td>$\frac{13}{2}$</td>
<td>1.054766</td>
</tr>
<tr>
<td>14</td>
<td>$\frac{14}{2}$</td>
<td>1.050757</td>
</tr>
<tr>
<td>15</td>
<td>$\frac{15}{2}$</td>
<td>1.047934</td>
</tr>
<tr>
<td>16</td>
<td>$\frac{16}{2}$</td>
<td>1.044274</td>
</tr>
<tr>
<td>17</td>
<td>$\frac{17}{2}$</td>
<td>1.041616</td>
</tr>
<tr>
<td>18</td>
<td>$\frac{18}{2}$</td>
<td>1.039259</td>
</tr>
<tr>
<td>19</td>
<td>$\frac{19}{2}$</td>
<td>1.037155</td>
</tr>
<tr>
<td>20</td>
<td>$\frac{20}{2}$</td>
<td>1.035865</td>
</tr>
</tbody>
</table>

(a) MI of cow's milk

Increment between doses (%)

(b) MI of cow's milk

Increment between doses (%)

Training

• Early recognition of signs
• Comfortable with autoinjector use
• Understanding of additional risk factors
Minimise risk of reactions

• Action plan for cases of infection or other important stressors (e.g. strenuous exercise)
 • Reduction of dose

• Timing

• Use of antihistamines?
Close monitoring

• Increases patient’s confidence and safety
• Access to helpline
• Preparedness of clinical services
OIT : Research or Clinical procedure?

• Can be performed as a clinical procedure only in highly specialised centres*

* EAACI Food Allergy Guidelines
Already happening

http://www.peanut.cuh.org.uk
Still, **a lot** of research is needed (and some is happening)
e.g. use modified food that is less allergenic (hypoallergens)

Immune shift, but not significant clinical effect in 6 months
e.g. new injection IT to fish

SPT change

Papadopoulos et al. EAACI 2017
e.g. immunotherapy through the skin

In clinical trials for peanut, milk, egg
Conclusions

• There is a pressing unmet need for better management of food allergy
• We have the solution, in principle
• Careful steps should be taken to bring this into daily practice, with safety
 • Increased personal attention and patient monitoring, for one
 • Resources needed
Conclusions

• Highly specialised centres are taking the lead in the translation
 • A major challenge is logistics/financing
 • Safety is never underestimated!

• The value of these approaches needs to be appreciated by the NHS

• Further research both towards optimisation and improved alternatives is mandatory
First, do not harm

“Ωφελέειν ἢ μη βλάπτειν”
- Ἰπποκράτης